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We consider an idealized model of a ferromagnetic metal where the conduction electrons of
the s band interact via an exchange interaction with a system of spins represented by a Heisen-
berg Hamiltonian. Using double-time Green’s functions, the effective mass and resistivity are
evaluated to second order in the coupling of electrons to the spin system, while the spin mag-
netization is given by the self-consistent approximation of Bogoliubov and Tyablikov. The
resistivity shows a sharp change in slope at the critical temperature that agrees qualitatively

with the experimental results for gadolinium.

I. INTRODUCTION

To study the effect of magnon drag on the effec-
tive mass and transport properties of electrons in
ferromagnetic metals, we consider an idealized
model in which the conduction electrons of the s
band interact via an exchange interaction with a
system of spins of magnitude 3 localized at the
sites of a cubic lattice, and represented by a
Heisenberg Hamiltonian, The model was previous-
ly considered by Methfessel and Mattis! in con-
nection with the “magnetic polaron” problem.

If we represent the lattice spins by Pauli opera-
tors that commute at different sites but anticom-
mute at the same site

Si=by Si=bi, Si=2(1-2b70)), (1)

[64, bj)=[by, b]=[b], b]]1=0 if i#j,

i, 61=1, (0)*=09)%=0, n;=bib,, (2)
our system is represented by a Hamiltonian

H=H,+Hg+H,, (3)

H, =Z/‘€ka}:saks, (4)

»S

Hs:%JojE"j -3 L Jdybih, _%PJijninj -3 NJy,
’j

i (5)
H =——g- 7‘7\ -i(E-K’)'ﬁj + 4+ *
I ls/148€ {b,ak.ak.. +0;05: Ay
2N e
+('§' _b;bj)(a;tak't —a;.ak.,)}. (6)

The a;s, a,s are creation and destruction opera-
tors for electrons in the conduction band with mo-
mentum kK , Spins=4 or ¥, and satisfy the usual
anticommutation rules:

{aks ’ a;'s'} = B+ Ossr @)
{a;s, a;'s’}'_‘ {aks’ ak’s’}= 0.

The square and curly brackets in Egs. (2) and
(7) mean a commutator and anticommutator, re-
spectively. We have, in Eq. (5),

Jyy=d, if 4, j are nearest neighbors
=0, otherwise, (8)
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and J0=Z‘IJ‘~} .
By

We calculate the effective mass of the conduction

electrons at the Fermi surface and the resistivity
to second order in the coupling constant g, as a
function of temperature, using retarded, double-
time Green’s functions.?

In this approximation, we can replace the ther-
mal average of the spin operators by their value
when g =0. We will consider the magnetization for
the Heisenberg ferromagnet as it was evaluated by
Bogoliubov and Tyablikov,?? that reproduces the
results of spin-wave theory at low temperature,
while for T=T, (T, = critical temperature) the mag-
netization coincides with the expression given by
molecular field theory. The decoupling of the
Green’s functions for the spin operators that leads
to this solution is consistent with our decoupling of
the electron Green’s functions to lowest order in
g.

In Sec. II, we calculate the electron self-energy,
and in Sec. III, an explicit expression for the ef-
fective mass at the Fermi surface and. the resis-
tivity is given.

II. GREEN’S FUNCTIONS
We indicate with a double bracket ({(A|B)), the

Fourier transform

(AlBY. =5 | e Gl, (at ()

J

(@ =379l 07).= (1 - 27) 5 =5 D, [0+

Ty (Guiby | DY -

of the retarded Green’s function?
Gas (t)=-i0@)([AQ), B(O)].), (10)

where A, B are any two operators, {( - - -) means a
thermal average, [A, B], is either the commutator
or anticommutator, 6(¢) is the step function, and
n is a positive infinitesimal.

From the Hamiltonian (3) and the commutation
relations (2) and (7), we derive the equations of
motion for the Green’s functions:

(@ —€p) Lan | ane),

on,w & 5 -i@-BeR :

= e D e e,

CE e B gy lap ), (D)
kj

(w _€nt) ((am’a;" >>+ =

g -i@-%)-B + +
—WTF—E Ha-o j<<bjak‘!an">)+
? e "B R (g fag )., (12)
where €,,=€,-1g €,,=€,+1g (13)

J i «binf[bj»

-5 T e EE Ri((1 - 2b1b)) dyiapn[B)) > +ES T enIECEY: ﬁ'((bi‘(a;'fak,,—ai‘ak")lb'})) . (1)
kk

kk'

Four new Green’s functions appear in the right-hand side of Egs. (11) and (12).

To lowest order, we

can decouple {(n; axs|a;ss)),, but we should look for the equations of motion of ((b; @, [a,.)), and
{b}aglay)y,. They are

(© =€ =3I (b @l am)) o= - 55 Zf e M EE R (gt

B T e T Ry (G paylapn ) - B T et R (1 - 201D, af s ps|atn))
YN £ TN,

k' iu

% ) -i(k'_krr)-Rl«bj(a;,'ak,,,_a*k,‘ak,,‘)ak'!a;,‘»4

1
Z. —§§1ij «bfah’la;'n»q-

+2,d jf«nj bfahflanl» + ‘Z ij<<bjnfak1'an'l>> (15)

f

_ L . . - CE By B,
© ~€n +3 T Gjan|drod) o= - 35 T e T B o3 0,0y,

~ 5D e TR (pimpagn |y L+ i i e EE R,

47 klkl.
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«(1 - zb;bl)ak ':ak”'ak‘la;"» ZNk:ZI:ue - HE-E Rj <<bj (ak"ak"r—ak'aak"i)akl ran'r»
1 + + + o+ + +
+3 ; I3 (bF apa| @) +;Z‘l Jis b an,|an)), —§ I bfn; ap. | agen)y, . (16)
[
Now, to express the right-hand side of Eqs. (11) p=r e s, (22)
and (12) up to order g% we need to evaluate Eqgs. £
(15) and (16) up to order g. Therefore, we de- 5=2(S%) =127 . (23)

couple the Green’s functions:

(bsbjap|ag. .= (b;07) are

a;’l>>+
ar+l’l>>++ O(ga)y
azn M.+ 0(g?),

«(1 - Zb;bj)a;' -5t sy -s|a;’s>)+

= 5”(1 -7) <<ak"

<<b; bfak' 'Ia;' ')) & ijﬁ«ak 2]

~ —(1-27)(ag_oay o) @y | anis)). + 0(€?),

where (bjb;)=(n; =7
independent of j owing to translational invariance,

and  (agrsaps) = Oppe fless), (17)

fl€)=1/(e*/ T+1)= Fermi function,
where Fkp=1.
We neglect

<<bj(a;'sak”s _a;'-sak“' -8 )aks|a;'s>>g o (gz) .

The other new Green’s functions in Eqs. (15)

and (16) involve the product of three b’s operators,

and they are decoupled together with the Green’s
functions appearing in Eq. (14) in the following
way:

<<njbf"'{"'>>*—N_(nj><<bf' [>>¢ (18)

We can now solve for the closed system of
equations and we obtain

84,0 0
__Jke'Vss'
27r w =€y = Zps(w) ’ (19)

«aks l Aps)) =

where €,,=¢,-%1go0, s=%
=€, +1g0o, s=¥ (20)

and the self-energy is given by

g 3(1+0) —0f(€qr)
Z:’”(w)_4N ; {w -€—owE®-q)+in %,

3(1-0)+0fEa:) s"}’ (21)

o - -, +ow(® - q)+t176

wE.p=zJo-J% -ql,

We can see by the definition, Eq. (23), that o
is the relative magnetization and that to lowest
order in g we can replace in Eq. (21) its value
for the ferromagnet when g =0. The self-con-
sistent evaluation of o from Eq. (14) with the de-
coupling (18) and g = 0 was studied in Refs. 2 and
3 with the result, in zero magnetic field,

o=1-7, ATl T<T, (24a)
28

o=[@/T)A -1/ )2 7Ts7,(1,-T<1)
(24b)

c=0, T>T, (24c¢)
where 7=T/J,,

_ _ 1
7e=T./d0= i318

From Eq. (22), we can identify w(k) with the
excitation energy of a spin wave of momentum K.
A very similar expression for the self-energy of
the conduction electrons was previously derived
by Kim.*

If we look at his Egs. (3.1a) and (3. 1b) we can
see that our Eq. (21) can be written

Tps(@)=2 (Kim) 8 Z{w 7

at —cw(k q)

Og,
w=-¢&,, +ow (R'—ﬁ)§ ’ (25)

+

the difference being a temperature-independent
smooth function of w that can be considered equal
to zero.

When T=0and 0=1, Eq. (21) coincides with the
self-energy calculated by Davis and Liu.’

III. EFFECTIVE MASS AND RESISTIVITY

The self-energy %,,(w) as it is expressed in
Eq. (21) is a complex function, whose real part
renormalizes the single-particle energy, while its
imaginary part gives the lifetime of a conduction
electron.



[

The effective mass® and resistivity are given
by

m* 9Tys
m LT [Reazks] fyyeep (26)

p=(m/ne® (1/7), (27)

where 7 is the lifetime of a conduction electron
at the Fermi surface
1/7=-[Imz,, €,,)]z

Gks=€F .

(28)

The replacement of w by €, in the argument of
Zps in Eqs. (26)—(28) is consistent with our ap-
proximation to lowest order in g.

To evaluate Z,; we use a Debye model for the
spin-wave spectrum, that is,

wk)=r¥2M <0, (29)
where w,, is some maximum frequency and
=k%/2m . (30)

We express the sum in Eq. (21) (1/N) ¥4 as an
integral [Q,/(27)*] [dq®, where R, is the volume
of a unit cell, and introduce a new variable

=|k-q|, po<p<tm
pdp=- kqd(cosf), cosf = k- d/kq . (31)

When €, is close to the Fermi surface, the im-
portant contributions to the integral in Eq. (21)
will come from g, _; ~€p .

For these values of €,,, €, _;, the minimum val-
ue of p would be, from Egs. (20) and (31),

po=(2m)V 2 |(ep — 3800 23— (€ + 580) V2 | ~g0/2vp,

(32)
while the maximum value p,, is given by writing
W, =p%/2M (33)

in Eq. (29).

Hence, approximating the integral in Eq. (21) by
the value it takes when &,,, €,, _; are both close to
the Fermi surface, and introducing the variable
p of Eq. (31), we can express I,,(€,,):

2
Qg
B @)~ g fada [ pap

5

S,

x{%(l +0)— af (€,)

€pi—€a—owlp) +in

. 2 (1-0)+of(€,.) 5 '} (34)

€ —€qut ow(p)+in =

The integrals are now separable and easy to
evaluate. Assuming half-filled bands, €z=0 and
calling D half the bandwidth, we find for €,,~€y,
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9 5 O
Re—gks = g 47;’ k {Pf de f(€)

€,

[ 1 1 5
OWp+ €Epr— €  OWo+ Epr— € st

D 1
+P/:D de fle) [— OW,+ €, — €

1
g ] 5} : (39

where wy=p3/2M, p, is given in Eq. (32), and kj
is the Fermi momentum.
The integral

Df(e) (D? - wd) 1w
prw € _1 N gptp? T Re (2 21TZT)’

(36)
where ¥(z) is the digamma function,® has been
evaluated previously in connection with problems
in dilute magnetic alloys.”

We can approximate, at low temperatures,

¥(z)~1In(z), |z|>1 (37

and we obtain for the effective mass in a neighbor-
hood of the Fermi surface

m*] 14g? Q mM | (0w, + &)+ m2T?

— = ot o

m Jg=s 812 kp  (0wy + &2+ M2T% ?
(38)

m* (0w, — &, )%+ m2T?

—_— =1 n—g—-g—Fk‘ .

m]s : +gz 8‘IT2 kF (0""0"@’»‘) +

At T=0, we recover again the result of Ref. 5,
but our expression for m*/m differs from that ob-
tained in Ref. 4 because Kim used the Einstein ap-
proximation for the spin-wave spectrum.

We find that at finite temperature 0< T'< T, the
effective mass (or the density of states) is en-
hanced at a distance = o(T)w, from the Fermi sur-
face for s=4 or ¥, but for 7#0 the peaks are
finite.®

The approximate behavior of m*/m as a function
of €, for different temperatures is shown in Fig.
1.

From Eqgs. (28) and (34), and using the relation-
ship

1 _p 1

w—€+in = w-¢€ - imo(w-e),

we obtain for both electrons with spin up and down

1 Q
7:g281r —“mM é(w - w)(1-0)
1 ~0Wy,/ T
~2TIn feT%/T} . (39)

We can see from Eq. (24a) that the second term
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FIG. 1. Relative effective mass m*/m of conduction electrons near the Fermi surface for different values of 7.
The effective mass for spins | (t) is enhanced at a distance +(-)o(T)w, of the Fermi energy €x=0. ¢(7) is the relative
magnetization and w; is the minimum frequency at which a spin wave can be emitted or absorbed.

in the right-hand side of (39) becomes exponential-
ly small when T ~0, while 1- o(T)~T%/2) hence
we obtain for the resistivity at low temperatures,
using Eq. (27),

p=~constxT*? T>0. (40)

As o(T)~0 when T~ T,, for this region of tem-
perature we can expand the second term in the
right-hand side of (39) in powers of o and we find

o(T)

S(o) ~1- (0, +wpio? T<T,

1-7/T,<1), (41)
where o (7) is given by Eqs. (24b) and (24c).

IV. CONCLUSIONS

We found that, at finite temperature 0< 7T < Tc,
the partial disorder of the lattice modifiesthe T'=0
results’ in two ways: (a) The exchange splitting
of the conduction band depends on the magnetiza-
tion through Eq. (20), and vanishes for T'>T,;

(b) the magnon frequencies appear in the self-
energy multiplied by the magnetization, a result
thatwas also obtained in Ref. 4, therefore, the en-
hancement in the effective mass for electrons
with spin up or down® becomes smaller and closer
to the Fermi surface, disappearing finally for
T>T,, as we show in Fig. 1.

Our expression for the resistivity when T'~T,
Eq. (41), shows the same dependence on the mag-
netization ¢ that was previously obtained by de
Gennes and Friedel,® and by van Peski-Tinbergen
and Dekker,® but the term with ¢ ? is multiplied by
a different coefficient.

Somewhat different results were obtained by

Kim!® considering the effect of fluctuations of the
short-range order of spins near the critical tem-
perature. These considerations are outside the

Q(T)/Q(«»)
1=

~T%

48

1 L I ! | ! | i 1 |
0 01 02 03 04 05 06 07 08 09 1

FIG. 2. Relative resistivity, in units of p(T— ),
versus T/T,, where T, is the critical temperature.
p(T)/p(®) = (T/T)3"2 when T— 0 while p(T)/p () — 1
—constX (1 -7T/T,) when T— T,.
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Bogoliubov-Tyablikov approximation for the ferro-
magnet, but the fact that this solution is consistent
with the decoupling of the Green’s functions that
gives the self-energy of the conduction electrons
to second order in g allows us to find an expres-
sion for the resistivity, Eq. (39), valid for all
temperatures, and, in particular, the low-temper-
ature result of Eq. (40).

A detailed comparison with experiments would
require a precise knowledgment of the parameter
w,,, but an approximate plot of the resistivity
versus temperature is given in Fig. 2. It shows

the qualitative features of the resistivity of gado-
linium as measured by Colvin, Legvold, and
Spedding.!' Gadolinium metal has localized spins
and approximates best the assumptions of the
theory.
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Coupling: Spin Correlations and Disorder Points*
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The existence of a disovder point Tp is established for some one- and two-dimensional
Ising lattices with antiferromagnetic next-nearest-neighbor interactions. Within the dis-
ordered phase, the decay of axial next-nearest-neighbor pair correlations with increasing
spin separation is positive monotonic exponential below T and oscillatory with exponential
envelope above Tp. A general definition of a disorder point is formulated, and a method of

estimating Tp described.

This paper summarizes some exact calculations
performed recently to determine the nature of pair
correlations between two spins on an axis of an
Ising lattice when next-nearest-neighbor interac-
tions are present, The primary result concerns
the existence of a disorder point 7} in one- and
two-dimensional Ising lattices with ferromag-
netic nn! and antiferromagnetic nnn' exchange.
The results also hold when the nn interaction is
antiferromagnetic, at least when the nn lattice is
loose packed. A definition of Tp is framed and a

procedure indicated for its estimation on lattices
for which exact solutions are not yet available.
Figure 1 illustrates the lattices considered, and
Fig. 2 shows the dependence of the disorder point
Tp, and the critical point ¢ (Curie point) on the
ratio of nnn to nn interactions for the “union-jack”
lattice, 2

Consider an Ising model with spin variables 03
=+1 at lattice sites ¥, and Hamiltonian

Wo==dJ, 200300 -d,200308, J,<0<d, (1)
an

nnn



